viernes, 28 de marzo de 2008

diagrama de tallos y hojas

EL DIAGRAMA DE TALLO Y HOJA

Es una técnica estadística para representar un conjunto de datos. Cada valor numérico se divide en dos partes. El o los dígitos principales forman el tallo y los dígitos secundarios las hojas. Los tallos están colocados a lo largo del eje vertical, y las hojas de cada observación a lo largo del eje horizontal.

Ejemplo
La siguiente distribución de frecuencia muestra el número de anuncios comerciales pagados por los 45 miembros de Greater Buffalo Automobile Dealer´s Association en 1999. Observemos que 7 de los 45 comerciantes pagaron entre 90 y 99 anuncios (pero menos de 100). Sin embargo, ¿El numero de comerciantes pagados en esta clase se agrupan en alrededor de 90, están dispersos a lo largo de toda clase, o se acumulan alrededor de 99? No podemos saberlo.

# De anuncios comprados Frecuencia
80 a 90 2
90 a 100 7
100 a 110 6
110 a 120 9
120 a 130 8
130 a 140 7
140 a 150 3
150 a 160 3
Total 45


Una técnica que se usa para presentar información cuantitativa en forma condensada es el diagrama de tallo y hoja. En el ejemplo anterior no podíamos la identidad de los valores de la clase de 90 a 100. Para ilustrar la construcción de un diagrama de tallo y hojas usando el número de comerciales comprados, supongamos que las 7 observaciones en la clase de 90 a 100 sean 96, 94, 93, 94, 95, 96, 97. EL valor de tallo es el digito o dígitos principales, en este caso el 9. Las hojas son los dígitos secundarios. EL tallo se coloca a la izquierda de una línea vertical y los valores de las hojas a la derecha.

Los valores de las clases de 90 a 100, aparecerían como sigue:
9 6 4 3 4 5 6 7

Por ultimo, ordenamos los valores dentro de cada tallo de menor a mayor. El segundo renglón del diagrama de tallo y hojas aparecería como sigue:
9 3 4 4 5 6 6 7

Con el diagrama de tallo y hojas podemos observar rápidamente que hubo 2 comerciantes que compraron 94 comerciales y que el número de anuncios comprados fue desde 93 hasta 97. Un diagrama de tallo y hojas es semejante a una distribución de frecuencia, pero con más información, esto es, valores de datos en lugar de marcas.

diagrama de cajas

ESTADÍSTICA DESCRIPTIVA
DIAGRAMA DE CAJAS Y BIGOTES (Box and Whisker Plot)
Presentación visual que describe al mismo tiempo varias características importantes de un conjunto de datos, tales como el centro, la dispersión, el alejamiento de la simetría, y la identificación de valores extremos (puntos atípicos), es decir, de valores que se alejan de una manera poco usual del resto de los datos.
Presenta los tres cuartiles, (y los valores mínimos y máximos) alineados sobre una caja vertical u horizontalmente.
Procedimiento
Para el diagrama de cajas y bigotes se requiere
Calcular la mediana y los otros dos cuartiles, con los cuales se formará la caja, que tiene la mediana como eje central, y como lados los dos cuartiles. Estos cuartiles reciben también los nombres de " bisagras". La altura (anchura) de la caja no interesa.
La distancia H definida como la distancia entre el cuartil superior y el cuartil inferior, es decir, corresponde al rango intecuartílico Þ H = Q3 - Q1 = RIC.
El paso correspondiente a 1.5 veces la distancia Þ Paso = 1.5 H
Cercas Internas, ubicadas a un paso de las bisagras o de los respectivos cuartiles. Así, las Cercas Internas Inferior (CIi) y Superior (CIs) estarán dadas por:CIi = Q1 - PasoCIs = Q3 + PasoSi la cerca interna inferior da menor que el valor mínimo de la muestra, ésta se hace igual al valor mínimo; igualmente, si la cerca interna superior da mayor que el valor máximo, ésta se hace igual a dicho valor.
Cercas Externas, ubicadas a un paso de las cercas internas. Así, las Cercas Externas Inferior (CEi) y Superior (CEs) estarán dadas por:CEi = CIi - PasoCEs = CIs + Paso
Se denominan "valores adyacentes" los ubicados entre las cercas internas y los bordes de las cajas. Por simplicidad no se grafican.
"Valores extremos" son los ubicados entre las dos cercas, y merecen especial atención, ya que pueden ser valores atípicos, que, en algunos casos, no pertenecen realmente a la distribución general de donde provienen los datos.
"Valores lejanos" o , ubicados por fuera de las cercas externas, correspondientes a valores extremos, que requieren un mayor análisis que los valores atípicos.
Considere los siguientes datos, correspondientes a
De este conjunto de datos tenemos que:
Me = 90.45Q1 = 88.25Q3 = 92.2
Rango intercuartílico = RIC = 92.2-88.25 = 3.95 Þ Paso = 5.925Cercas interna inferior = 88.25 - 5.925 = 82.325Cerca interna superior = 92.20 + 5.925 = 98.125Cerca externa inferior = 82.325 - 5.925 = 76.40Cerca externa superior = 98.125 + 5.925 = 104.05

Como se observa hay dos valores que merecen especial atención: 98.8 y 100.3 que están entre las cercas interna y externa superior.

propiedades de sumatoria

Por sumatoria se entiende la suma de un conjunto finito de números, que se denota como sigue:
donde:
S: magnitud resultante de la suma.
T: cantidad de valores a sumar.
k: índice de la suma, que varía entre h y h+t
h: punto inicial de la sumatoria
h+t: punto final de la sumatoria
nk: valor de la magnitud objeto de suma en el punto k
Un tipo particular de sumatoria de gran importancia lo es el caso cuando t→ ∞, que se conoce como serie y se representa de la manera siguiente:
Considerando la amplitud que reviste el análisis de las series, este tema no será abordado en este trabajo.
III. Propiedades de las sumatorias
Entre las propiedades generales de las sumatorias reportadas en la literatura se encuentra las once que se relacionan a continuación, cuya demostración se realiza utilizando el procedimiento matemático de Inducción Completa.
III.1 Reportadas en la literatura
Propiedad #1:
Propiedad #2:
Propiedad #3:
Propiedad #4:
Propiedad #5:
Propiedad #6:
Propiedad #7:
Propiedad #8:
Propiedad #9:
Propiedad #10:
Propiedad #11:
III.2 Obtenidas en este trabajo
En la práctica existen múltiples problemas cuya solución conduce al cálculo de sumatorias que cumplen con requisitos especiales, como es el caso de la solución de Sistemas de Ecuaciones Lineales resultante para la determinación de las derivadas de funciones con intervalo de variación uniforme de la variable dependiente; los problemas que exhiben simetría, etc., bajo cuyas condiciones es posible obtener expresiones útiles de trabajo, que simplifican las operaciones a realizar, entre las que pueden señalarse las que se deducen a continuación.
III.2.1 Considerando simetría en el recorrido del índice de la suma
Una condición que trata de utilizarse siempre que sea posible, ya que simplifica los cálculos en los modelos de fenómenos o procesos, es la simetría, la que en términos de las sumatorias esta característica se corresponde con la variación del índice de la suma en el intervalo como se indica a continuación:
Bajo esta hipótesis de trabajo, es posible obtener el conjunto de propiedades que se demuestran a continuación.
Propiedad #1:
Demostración:
Propiedad #2:
Demostración:
Propiedad #3:
Propiedad #4:
Propiedad #5:
II.2.2 Solución de Sistemas de Ecuaciones Lineales con variable independiente de la forma x ± kD x
Una aplicación en la cual las sumatorias simétricas adoptan un término interesante es el caso de la obtención de expresiones analíticas por el cálculo de las derivadas de funciones de variable discreta, en el cual es común trabajar con términos de la forma elevado a una cierta potencia. A continuación se deducen cinco propiedades de gran utilidad práctica.
Propiedad #1: Cálculo de
Propiedad #2: Cálculo de
Propiedad #3: Cálculo de

Propiedad #4: Cálculo de
Propiedad #5: Cálculo de

VARIABLES.

Variable es una característica (magnitud, vector o número) que puede ser medida, adoptando diferentes valores en cada uno de los casos de un estudio.

Clasificación de las variables [editar]
En un estudio científico, podemos clasificar las variables según la escala de medición o la influencia que asignemos a unas variables sobre otras y por esta razón .
Según la escala de medición:
Variables cualitativas: Son las variables que expresan distintas cualidades, características o modalidad. Cada modalidad que se presenta se denomina atributo o categoría y la medición consiste en una clasificación de dichos atributos. Las variables cualitativas pueden ser ordinales y nominales. Las variables cualitativas pueden ser dicotómicas cuando sólo pueden tomar dos valores posibles como sí y no, hombre y mujer o son politómicas cuando pueden adquirir tres o más valores. Dentro de ellas podemos distinguir:
Variable cualitativa ordinal: La variable puede tomar distintos valores ordenados siguiendo una escala establecida, aunque no es necesario que el intervalo entre mediciones sea uniforme, por ejemplo, leve, moderado, grave
Variable cualitativa nominal: En esta variable los valores no pueden ser sometidos a un criterio de orden como por ejemplo los colores o el lugar de residencia.
Variables cuantitativas: Son las variables que se expresan mediante cantidades numéricas. Las variables cuas además pueden ser:
Variable discreta: Es la variable que presenta separaciones o interrupciones en la escala de valores que puede tomar. Estas separaciones o interrupciones indican la ausencia de valores entre los distintos valores específicos que la variable pueda asumir. Un ejemplo es el número de hijos.
Variable continua: Es la variable que puede adquirir cualquier valor dentro de un intervalo especificado de valores. Por ejemplo el peso o la altura, que solamente limitado por la precisión del aparato medidor, en teoría permiten que siempre existe un valor entre dos cualesquiera.
Según la influencia que asignemos a unas variables sobre otras, podrán ser:
Variables independientes: Son las que el investigador escoge para establecer agrupaciones en el estudio, clasificando intrínsecamente a los casos del mismo. Un tipo especial son las variables de confusión, que modifican al resto de las variables independientes y que de no tenerse en cuenta adecuadamente pueden alterar los resultados por medio de un sesgo.
Variables dependientes: Son las variables de respuesta que se observan en el estudio y que podrían estar influenciadas por los valores de las variables independientes.

jueves, 27 de marzo de 2008

estadistica aplicada

es una rama de la matemática que se refiere a la recolección, estudio e interpretación de los datos obtenidos en un estudio. Es aplicable a una amplia variedad de disciplinas, desde la física hasta las ciencias sociales, ciencias de la salud como la Psicología y la Medicina, y usada en la toma de decisiones en áreas de negocios e instituciones gubernamentales.