COMENTARIO SOBRE LA PROBABILIDAD:
EN SI LA PROBABILIDAD ES LA QUE MIDE LA FRECUENCIA CON LA QUE APARECE UN RESULTADO EN UN MOMENTO DETERMINADO MAS QUE TODO CUANDO SE REALIZA O SE QUIERA REALIZAR UN EXPERIMENTO EN UN MOMENTO DETERMINADO.
COMENTARIO SOBRE SUCESO ELEMENTAL:
Un suceso se dice que es un suceso elemental si está formado por un único elemento del espacio muestral
si lanzamos un dado y si cae 1,2,3,4,5,o 6 a esos se le llama sucesos elementales.
COMENTARIO DE SUCESOS COMPUESTOS:
Suceso compuesto
Un suceso se dice que es un suceso compuesto si está formado por más de un elemento del espacio muestral.
4.- Entre los sucesos que has utilizado anteriormente indica cuál representa: a) El suceso seguro.
b) El suceso imposible.
c) Sucesos elementales.
b) Sucesos compuestos.
COMENTARIO ESPACIO MUESTRAL:
EN SI EL ESPACIO MUESTRAL ES TODAS LAS CANTIDADES DE POSIBLES RESPUESTAS.
COMENTARIO PERMUTACIONES:
EN SI LE LLAMASMOS PERMUTACIONES A LOS ARREGLOS DONDE IMPORTA EL ORDEN
COMENTARIO COMBINACIONES:
SE LE LLAMA ASI A LA UNION DE DOS COSAS EN UNA MISMA PERO ESTA ES TOTALMENTE LO CONTRARIO A LAS PERMUTACIONES PORQUE EN ELLAS NO IMPORTA LO QUE ES EL ORDEN OSEA EL ORDEN NO ALTERA EL RESULTADO.
PRINCIPIO FUNDAMENTAL DEL CONTEO:
ESTA COMPUESTO POR LO QUE SON LAS PERMUTACIONES Y COMBINACIONES
COMENTARIO SOBRE LA PROBABILIDAD:
ES LA CREACION ENTRE EL NUMERO DE RESULTADOS DE EXITO RESPECTO AL TOTAL DE RESULTADOS POSIBLES Y ESTA PUEDE SER SUBJETIVA U OBJETIVA.
COMENTARIO SUBJETIVA:
REFLEJA LA PERCEPCION DE QUIEN LA EMITE
COMENTARIO OBJETIVA: ES EL RESULTADO DE CALCULOS
COMENTARIO DE AXIOMAS:
ES LA COSTRUCCION DE CONOCIMIENTOS PROBABILISTICOS EN BASE A LA DEDUCCION
TIPOS DE AXIOMAS:
MUTUAMENTE EXCLUYENTES: SON AQUELLOS QUE NO PUEDEN OCURRIR AL MISMO TIEMPO
INDEPENDIENTES: SON LOS QUE NO SE VEN AFECTADOS POR OTROS OSEA QUE NO AFECTAN LOS OTROS SUCESOS
DEPENDIENTES: SON EVENTOS QUE AFECTAN LA PROBABILIDAD MATEMATICA DE OTRO
NO EXCLUYENTES: ESTOS IMPIDEN QUE LA OCURRENCIA DE OTRO
COMENTARIO DIAGRAMA DE ARBOL DE LA PROBABILIDAD:
EN SI ESTE ES UN TIPO DE GRAFICA EN EL CUAL REPRESENTA RESULTADOS POSIBLES DE UN DETERMINADO EVENTO
Esperanza matemática
En estadística la esperanza matemática (o simplemente esperanza) o valor esperado de una variable aleatoria es la suma del producto de la probabilidad de cada suceso por el valor de dicho suceso. Por ejemplo, en un juego de azar el valor esperado es el beneficio medio.
Si todos los sucesos son de igual probabilidad la esperanza es la media aritmética.
comentario esperanza matematica:
tiene por objeto calcular el promedio de ciertos resultado probabilisticos.
viernes, 26 de septiembre de 2008
comentarios.
COMENTARIO TEORIA DE CONJUNTOS:
EN SI LA TEORIA DE CONJUNTOS ES TODA LA SUBDIVICION DE CONJUNTOS COMO POR EJEMPLO LA UNION, INTERSECCION, DIFERENCIA ENTRE OTROS PERO EN SI TODOS ESTOS NECESITAN DE DOS O MAS CONJUNTOS CON CIERTA O DETERMINADA CANTIDAD DE ELEMENTOS.
COMENTARIO UNION DE CONJUNTOS:
EN SI SE LE LLAMA UNION DE CONJUNTOS A LA CREACION DE UN NUEVO CONJUNTO CON LOS ELEMENTOS DE DOS CONJUNTOS.
COMENTARIO INTERSECCION:
SE LE LLAMA ASI A LA CREACION DE UN NUEVO CONJUNTO PERO EN SI SEPARANDO LOS ELEMENTOS DISTINTOS DE DOS CONJUNTOS.
COMENTARIO DE DIFERENCIA:
LA DIFERENCIA EN SI ES CUANDO FORMAN UN CONJUNTO EN LA QUE NO SE ENCUENTRAN LOS ELEMENTOS DEL PRIMER CONJUNTO BASICAMENTE PODRIAMOS DECIR QUE SI TENEMOS EL CONJUNTO !!A!! Y FORMAMOS OTRO CONJUNTO PERO CON LOS ELEMENTOS DIFERENTES DE LA QUE SE ENCUENTRA EN EL PRIMER CONJUNTO DADO.
EN SI LA TEORIA DE CONJUNTOS ES TODA LA SUBDIVICION DE CONJUNTOS COMO POR EJEMPLO LA UNION, INTERSECCION, DIFERENCIA ENTRE OTROS PERO EN SI TODOS ESTOS NECESITAN DE DOS O MAS CONJUNTOS CON CIERTA O DETERMINADA CANTIDAD DE ELEMENTOS.
COMENTARIO UNION DE CONJUNTOS:
EN SI SE LE LLAMA UNION DE CONJUNTOS A LA CREACION DE UN NUEVO CONJUNTO CON LOS ELEMENTOS DE DOS CONJUNTOS.
COMENTARIO INTERSECCION:
SE LE LLAMA ASI A LA CREACION DE UN NUEVO CONJUNTO PERO EN SI SEPARANDO LOS ELEMENTOS DISTINTOS DE DOS CONJUNTOS.
COMENTARIO DE DIFERENCIA:
LA DIFERENCIA EN SI ES CUANDO FORMAN UN CONJUNTO EN LA QUE NO SE ENCUENTRAN LOS ELEMENTOS DEL PRIMER CONJUNTO BASICAMENTE PODRIAMOS DECIR QUE SI TENEMOS EL CONJUNTO !!A!! Y FORMAMOS OTRO CONJUNTO PERO CON LOS ELEMENTOS DIFERENTES DE LA QUE SE ENCUENTRA EN EL PRIMER CONJUNTO DADO.
sábado, 20 de septiembre de 2008
axiomas
Un axioma, en epistemología, es una "verdad evidente" que no requiere demostración, pues se justifica a sí misma, y sobre la cual se construye el resto de conocimientos por medio de la deducción; aunque, no todos los epistemólogos están de acuerdo con esta definición "clásica". El axioma gira siempre sobre sí mismo, mientras los postulados y conclusiones posteriores se deducen de este.
En matemática, un axioma no es necesariamente una verdad evidente, sino una expresión lógica utilizada en una deducción para llegar a una conclusión.
Contenido [ocultar]
1 Etimología
2 Lógica
2.1 Limitaciones
3 Matemáticas
3.1 Axiomas lógicos
3.2 Ejemplos
3.3 Axiomas no-lógicos
4 Véase también
5 Enlaces externos
Etimología [editar]La palabra axioma proviene del griego αξιωμα (axioma), que significa "lo que parece justo" o aquello que es considerado evidente y sin necesidad de demostración. La palabra viene del griego αξιοειν (axioein) que significa "valorar", que a su vez procede de αξιος (axios) que significa "valuable" o "digno". Entre los antiguos filósofos griegos, un axioma era aquello que parecía ser verdadero sin ninguna necesidad de prueba.
Lógica [editar]La lógica del axioma es partir de una premisa calificada verdadera por sí misma (el axioma) e inferir sobre esta otras proposiciones por medio del método deductivo, obteniendo conclusiones coherentes con el axioma. Los axiomas han de cumplir sólo un requisito: de ellos, y sólo de ellos, han de deducirse todas las demás proposiciones de la teoría dada.
Limitaciones [editar]Kurt Gödel demostró a mediados del siglo XX que los sistemas axiomáticos de cierta complejidad, por definidos y consistentes que sean, poseen serias limitaciones. En todo sistema de una cierta complejidad, siempre habrá una proposición P que sea verdadera, pero no demostrable. De hecho, Gödel prueba que, en cualquier sistema formal que incluya la aritmética, puede formarse una proposición P que afirme que este enunciado no es demostrable. Si se pudiera demostrar P, el sistema sería contradictorio: no sería consistente. Luego P no es demostrable y, por tanto, P es verdadero.
Matemáticas [editar]En lógica matemática, un axioma no es necesariamente una verdad evidente, sino una expresión lógica utilizada en una deducción para llegar a una conclusión. En matemática se distinguen dos tipos de axiomas: axiomas lógicos y axiomas no-lógicos.
Axiomas lógicos [editar]Éstas son ciertas fórmulas en un lenguaje que son universalmente válidas, esto es, fórmulas que son satisfechas por cualquier estructura y por cualquier función variable, en términos coloquiales, éstos son enunciados que son verdaderos en cualquier universo posible, bajo cualquier interpretación posible y con cualquier asignación de valores. Usualmente uno toma como axiomas lógicos un conjunto mínimo de tautologías que es suficiente para probar todas las tautologías en el lenguaje.
Ejemplos [editar]En el cálculo proposicional es común tomar como axiomas lógicos todas las fórmulas siguientes, donde , , y pueden ser cualquier fórmula en el lenguaje:
Cada uno de estos patrones es un esquema de axiomas, una regla para generar un número infinito de axiomas. Por ejemplo, si A, B, y C son variables proposicionales, entonces y son instancias del esquema 1 y por lo tanto son axiomas. Puede probarse que con solamente estos tres esquemas de axiomas y la regla de inferencia modus ponens, alguien puede probar todas las tautologías del cálculo proposicional, también puede probarse que ningún par de estos esquemas es suficiente para probar todas las tautologías utilizando modus ponens. Este conjunto de esquemas axiomáticos también es utilizado en el cálculo de predicados pero son necesarios más axiomas lógicos.
Ejemplo: Sea un lenguaje de primer orden. Para cada variable , la fórmula es universalmente valida.
Esto significa que, para cualquier símbolo variable , la fórmula puede considerarse un axioma. Para no caer en la vaguedad o en una serie infinita de "nociones primitivas", primeramente se necesita ya sea una idea de lo que queremos decir con o un definir un uso puramente formal y sintáctico del símbolo , y de hecho, la lógica matemática lo hace.
Ejemplo: Otro ejemplo interesante, es el de la instanciación universal. Para una fórmula en un lenguaje de primer orden , una variable y un término que es sustituible por en , la fórmula es válida universalmente.
En términos informales, este ejemplo nos permite afirmar que si conocemos que una cierta propiedad se cumple para toda y que si es un objeto particular en nuestra estructura, entonces deberíamos ser capaces de afirmar . De nuevo, estamos afirmando que la fórmula es válida, esto es, debemos ser capaces de dar una prueba de este hecho, o mejor dicho, una metaprueba. De hecho, estos ejemplos son metateoremas de nuestra teoría de la lógica matemática ya que nos referimos meramente al concepto de demostración en sí. Además de esto, también podemos tener una generalización existencial:
Esquema axiomático: Para una fórmula en un lenguaje de primer orden , una variable y un término que es sustituible por en , la es universalmente válida.
Axiomas no-lógicos [editar]Los Axiomas no-lógicos son fórmulas específicas de una teoría y se aceptan solamente por acuerdo. Razonando acerca de dos estructuras diferentes, por ejemplo, los números naturales y los números enteros puede involucrar a los mismos axiomas lógicos, sin embargo, los axiomas no-lógicos capturan lo que es especial acerca de una estructura en particular (o un conjunto de estructuras). Por lo tanto los axiomas no-lógicos, a diferencia de los axiomas lógicos, no son tautologías. Otro nombre para los axiomas no-lógicos es postulado.
Casi cualquier teoría matemática moderna se fundamenta en un conjunto de axiomas no-lógicos, se pensaba que en principio cualquier teoría puede ser axiomatizada y formalizada, posteriormente esto se demostró imposible.
En el discurso matemático a menudo se hace referencia a los axiomas no-lógicos simplemente como axiomas, esto no significa que sean verdaderos en un sentido absoluto. Por ejemplo en algunos grupos, una operación puede ser conmutativa y esto puede ser afirmado introduciendo un axioma adicional, pero aún sin la introducción de este axioma se puede desarrollar la teoría de grupos e incluso se puede tomar su negación como un axioma para estudiar los grupos no-conmutativos.
Un axioma es el elemento básico de un sistema de lógica formal y junto con las reglas de inferencia definen un sistema deductivo
En matemática, un axioma no es necesariamente una verdad evidente, sino una expresión lógica utilizada en una deducción para llegar a una conclusión.
Contenido [ocultar]
1 Etimología
2 Lógica
2.1 Limitaciones
3 Matemáticas
3.1 Axiomas lógicos
3.2 Ejemplos
3.3 Axiomas no-lógicos
4 Véase también
5 Enlaces externos
Etimología [editar]La palabra axioma proviene del griego αξιωμα (axioma), que significa "lo que parece justo" o aquello que es considerado evidente y sin necesidad de demostración. La palabra viene del griego αξιοειν (axioein) que significa "valorar", que a su vez procede de αξιος (axios) que significa "valuable" o "digno". Entre los antiguos filósofos griegos, un axioma era aquello que parecía ser verdadero sin ninguna necesidad de prueba.
Lógica [editar]La lógica del axioma es partir de una premisa calificada verdadera por sí misma (el axioma) e inferir sobre esta otras proposiciones por medio del método deductivo, obteniendo conclusiones coherentes con el axioma. Los axiomas han de cumplir sólo un requisito: de ellos, y sólo de ellos, han de deducirse todas las demás proposiciones de la teoría dada.
Limitaciones [editar]Kurt Gödel demostró a mediados del siglo XX que los sistemas axiomáticos de cierta complejidad, por definidos y consistentes que sean, poseen serias limitaciones. En todo sistema de una cierta complejidad, siempre habrá una proposición P que sea verdadera, pero no demostrable. De hecho, Gödel prueba que, en cualquier sistema formal que incluya la aritmética, puede formarse una proposición P que afirme que este enunciado no es demostrable. Si se pudiera demostrar P, el sistema sería contradictorio: no sería consistente. Luego P no es demostrable y, por tanto, P es verdadero.
Matemáticas [editar]En lógica matemática, un axioma no es necesariamente una verdad evidente, sino una expresión lógica utilizada en una deducción para llegar a una conclusión. En matemática se distinguen dos tipos de axiomas: axiomas lógicos y axiomas no-lógicos.
Axiomas lógicos [editar]Éstas son ciertas fórmulas en un lenguaje que son universalmente válidas, esto es, fórmulas que son satisfechas por cualquier estructura y por cualquier función variable, en términos coloquiales, éstos son enunciados que son verdaderos en cualquier universo posible, bajo cualquier interpretación posible y con cualquier asignación de valores. Usualmente uno toma como axiomas lógicos un conjunto mínimo de tautologías que es suficiente para probar todas las tautologías en el lenguaje.
Ejemplos [editar]En el cálculo proposicional es común tomar como axiomas lógicos todas las fórmulas siguientes, donde , , y pueden ser cualquier fórmula en el lenguaje:
Cada uno de estos patrones es un esquema de axiomas, una regla para generar un número infinito de axiomas. Por ejemplo, si A, B, y C son variables proposicionales, entonces y son instancias del esquema 1 y por lo tanto son axiomas. Puede probarse que con solamente estos tres esquemas de axiomas y la regla de inferencia modus ponens, alguien puede probar todas las tautologías del cálculo proposicional, también puede probarse que ningún par de estos esquemas es suficiente para probar todas las tautologías utilizando modus ponens. Este conjunto de esquemas axiomáticos también es utilizado en el cálculo de predicados pero son necesarios más axiomas lógicos.
Ejemplo: Sea un lenguaje de primer orden. Para cada variable , la fórmula es universalmente valida.
Esto significa que, para cualquier símbolo variable , la fórmula puede considerarse un axioma. Para no caer en la vaguedad o en una serie infinita de "nociones primitivas", primeramente se necesita ya sea una idea de lo que queremos decir con o un definir un uso puramente formal y sintáctico del símbolo , y de hecho, la lógica matemática lo hace.
Ejemplo: Otro ejemplo interesante, es el de la instanciación universal. Para una fórmula en un lenguaje de primer orden , una variable y un término que es sustituible por en , la fórmula es válida universalmente.
En términos informales, este ejemplo nos permite afirmar que si conocemos que una cierta propiedad se cumple para toda y que si es un objeto particular en nuestra estructura, entonces deberíamos ser capaces de afirmar . De nuevo, estamos afirmando que la fórmula es válida, esto es, debemos ser capaces de dar una prueba de este hecho, o mejor dicho, una metaprueba. De hecho, estos ejemplos son metateoremas de nuestra teoría de la lógica matemática ya que nos referimos meramente al concepto de demostración en sí. Además de esto, también podemos tener una generalización existencial:
Esquema axiomático: Para una fórmula en un lenguaje de primer orden , una variable y un término que es sustituible por en , la es universalmente válida.
Axiomas no-lógicos [editar]Los Axiomas no-lógicos son fórmulas específicas de una teoría y se aceptan solamente por acuerdo. Razonando acerca de dos estructuras diferentes, por ejemplo, los números naturales y los números enteros puede involucrar a los mismos axiomas lógicos, sin embargo, los axiomas no-lógicos capturan lo que es especial acerca de una estructura en particular (o un conjunto de estructuras). Por lo tanto los axiomas no-lógicos, a diferencia de los axiomas lógicos, no son tautologías. Otro nombre para los axiomas no-lógicos es postulado.
Casi cualquier teoría matemática moderna se fundamenta en un conjunto de axiomas no-lógicos, se pensaba que en principio cualquier teoría puede ser axiomatizada y formalizada, posteriormente esto se demostró imposible.
En el discurso matemático a menudo se hace referencia a los axiomas no-lógicos simplemente como axiomas, esto no significa que sean verdaderos en un sentido absoluto. Por ejemplo en algunos grupos, una operación puede ser conmutativa y esto puede ser afirmado introduciendo un axioma adicional, pero aún sin la introducción de este axioma se puede desarrollar la teoría de grupos e incluso se puede tomar su negación como un axioma para estudiar los grupos no-conmutativos.
Un axioma es el elemento básico de un sistema de lógica formal y junto con las reglas de inferencia definen un sistema deductivo
Suscribirse a:
Entradas (Atom)