La distribución normal
Una de las distribuciones teóricas mejor estudiadas en los textos de bioestadística y más utilizada en la práctica es la distribución normal, también llamada distribución gaussiana. Su importancia se debe fundamentalmente a la frecuencia con la que distintas variables asociadas a fenómenos naturales y cotidianos siguen, aproximadamente, esta distribución. Caracteres morfológicos (como la talla o el peso), o psicológicos (como el cociente intelectual) son ejemplos de variables de las que frecuentemente se asume que siguen una distribución normal. No obstante, y aunque algunos autores han señalado que el comportamiento de muchos parámetros en el campo de la salud puede ser descrito mediante una distribución normal, puede resultar incluso poco frecuente encontrar variables que se ajusten a este tipo de comportamiento.
El uso extendido de la distribución normal en las aplicaciones estadísticas puede explicarse, además, por otras razones. Muchos de los procedimientos estadísticos habitualmente utilizados asumen la normalidad de los datos observados. Aunque muchas de estas técnicas no son demasiado sensibles a desviaciones de la normal y, en general, esta hipótesis puede obviarse cuando se dispone de un número suficiente de datos, resulta recomendable contrastar siempre si se puede asumir o no una distribución normal. La simple exploración visual de los datos puede sugerir la forma de su distribución. No obstante, existen otras medidas, gráficos de normalidad y contrastes de hipótesis que pueden ayudarnos a decidir, de un modo más riguroso, si la muestra de la que se dispone procede o no de una distribución normal. Cuando los datos no sean normales, podremos o bien transformarlos o emplear otros métodos estadísticos que no exijan este tipo de restricciones (los llamados métodos no paramétricos).
La Distribución Normal
La distribución normal fue reconocida por primera vez por el francés Abraham de Moivre (1667-1754). Posteriormente, Carl Friedrich Gauss (1777-1855) elaboró desarrollos más profundos y formuló la ecuación de la curva; de ahí que también se la conozca, más comúnmente, como la "campana de Gauss".
Propiedades de la distribución normal:
La distribución normal posee ciertas propiedades importantes que conviene destacar:
Tiene una única moda, que coincide con su media y su mediana.
La curva normal es asintótica al eje de abscisas. Por ello, cualquier valor entre - ¥, y + ¥ es teóricamente posible. El área total bajo la curva es, por tanto, igual a 1.
Es simétrica con respecto a su media m. Según esto, para este tipo de variables existe una probabilidad de un 50% de observar un dato mayor que la media, y un 50% de observar un dato menor.
La distancia entre la línea trazada en la media y el punto de inflexión de la curva es igual a una desviación típica (s). Cuanto mayor sea s, más aplanada será la curva de la densidad.
El área bajo la curva comprendido entre los valores situados aproximadamente a dos desviaciones estándar de la media es igual a 0.95. En concreto, existe un 95% de posibilidades de observar un valor comprendido en el intervalo ( m - 1.96 s, m + 1.96 s )
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario